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Thevisualwordformarea(VWFA) isa regionofhumaninferotempo-
ral cortex that emerges at a fixed location in the occipitotemporal
cortex during reading acquisition and systematically responds to
writtenwords in literate individuals.According totheneuronal recy-
cling hypothesis, this region arises through the repurposing, for let-
ter recognition, of a subpart of the ventral visual pathway initially
involved in face and object recognition. Furthermore, according to
the biased connectivity hypothesis, its reproducible localization is
duetopreexistingconnectionsfromthissubregion toareas involved
inspoken-languageprocessing.Here,weevaluatethosehypotheses
inanexplicit computationalmodel.Wetrainedadeepconvolutional
neural networkof the ventral visual pathway,first to categorizepic-
tures and then to recognizewrittenwords invariantly for case, font,
and size. We show that the model can account for many properties
of the VWFA, particularly when a subset of units possesses a biased
connectivity to word output units. The network develops a sparse,
invariant representation ofwrittenwords, based on a restricted set
of reading-selective units. Their activationmimics several properties
of the VWFA, and their lesioning causes a reading-specific deficit.
The model predicts that, in literate brains, written words are
encoded by a compositional neural codewith neurons tuned either
to individual letters and their ordinal position relative toword start
orwordendingortopairsof letters (bigrams).

reading j VWFA j neural network j literacy j compositionality

Reading acquisition relies on the development of a novel
interface between vision and language, in charge of effi-

ciently identifying letters and their ordering (1, 2). This ortho-
graphic analysis then feeds the language systems supporting
semantics and phonology. Over the past 20 y, some basic fea-
tures of this interface have been put to light. A specific region
of the left ventral occipitotemporal (VOT) cortex, which was
labeled the visual word form area (VWFA), is present at a simi-
lar location in the brain of every literate subject and is thought
to underlie orthographic coding (3). Functional brain imaging
has uncovered a host of functional features of the VWFA—for
example, tuning to familiar vs. unknown alphabets (4, 5), partial
invariance for retinal location (3, 6), invariance for uppercase/
lowercase (7, 8), or sensitivity to the frequency of word occur-
rence (9, 10). Nevertheless, how this region becomes special-
ized for written words, or even whether it does so, remains a
highly controversial issue (11–14).

Current evidence suggests that the VWFA site owes its func-
tional specialization to a combination of two factors. First, accord-
ing to the neuronal recycling hypothesis, reading preempts and
repurposes part of the large region of ventral visual cortex that
participates in visual object recognition (11, 15–17). The specific
region involved may not only possess a generic architecture for
invariant visual recognition, but also a bottom-up sensitivity to
some of the shape features relevant to word recognition, such as a
preference for high-resolution foveal inputs (18, 19), line junctions

(20), and midlevel geometrical features (21). Because these prop-
erties are widespread in both hemispheres, however, a second
hypothesis may be needed to explain the narrow, reproducible
location of the VWFA in the depth of the left infero-temporal sul-
cus. According to the biased-connectivity hypothesis, this left-
hemispheric site exhibits a preexisting biased connectivity, or
“connectivity fingerprints,” with distant language areas (22–27).
Indeed, in agreement with this idea, the precise location of the
VWFA in 8-y-old readers can be predicted from their long-
distance anatomical connectivity to other brain areas at 5 y of age,
before they learned to read (27).

In the present work, we assess to what extent a minimal com-
putational model of those two hypotheses may suffice to
account for the emergence of the VWFA during reading acqui-
sition. This study complements a recent work (28) that investi-
gates the emergence of letter representation using unsupervised
learning. Here, we focus on the learning of words and how their
combinations of letters are represented. Specifically, we simu-
late a deep neural network whose architecture was not
designed for reading, but is inspired from that of the ventral
visual cortex and which was shown to provide a good fit to both
behavioral and electrophysiological observations on face and
object recognition (29). We examine what happens when this
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network, after being trained to identify pictures of generic
object categories, is further taught to identify written words,
with and without biased connections to output lexical units.

Aims of the Present Study
Our work had two aims. First, we wanted to see if we could
reproduce a list of experimentally observed properties of the
VWFA, namely:

- Emergence, after training, of a localized patch of neurons spe-
cialized for words, as opposed to other stimuli such as faces or
objects (11);

- Recycling of units with modest prior involvement for objects
and faces prior to reading acquisition (11);

- Invariance for word size, case, and font (3, 6–8) and to rotation
up to ∼40˚ and letter spacing up to ∼1.5 letter width (30);

- Monotonically increasing response to a hierarchy of letter
strings that increasingly approximate the statistics of words in
the learned script (31–33);

- Resistance of word recognition to letter transpositions (also
known as the Cmabridge University Effect) (34, 35);

- Sudden loss of reading abilities (pure alexia) when this patch
of cortex is lesioned (36–38), with preserved recognition of
other visual categories.

A failure to capture some of these properties with a simple
feed-forward convolutional neural network (CNN) would be
interesting, inasmuch as it may point to the need for additional
properties—for instance, recurrent and/or top-down connec-
tions (12, 14, 33, 39).

Our second goal was to see if we could predict, in anticipa-
tion of future experiments, some of the properties of the neural
code for written words. It is currently controversial whether
neurons in the reading pathway are specialized for whole words
(40), frequent pairs of letters (“bigrams”) (41, 42), graphemes
that map onto phonemes (43), or individual letters at a specific
location (44, 45). Indeed, these possibilities are not mutually
exclusive, and multiple codes may coexist, perhaps in different
pathways, to support different tasks such as comprehension vs.
reading aloud (43, 46). While it is currently nearly impossible
to visualize single neurons in the reading pathway in humans,
this has been achieved in a nonhuman primate monkey model
(47), and advances in intracranial recordings may soon make it
possible in the human brain (33, 48). Using as few prior
hypotheses as possible, we describe how an artificial neural net-
work encodes visual words, in the hope that its predicted tuning
curves may soon become empirically testable.

The Model
Architecture. Our model is based on CORnet-Z, the simplest
network in the CORnet family (29). These CNNs all share a
common design of four spatially organized modules meant to rep-
resent the visual areas V1, V2, V4, and inferior temporal cortex
(IT) in the ventral visual pathway (topological modules hereafter),
capped by a nontopological decoding structure (dense layer in
Fig. 1). We chose the simplest among CORnet models because
high performance was not the focus of this study and because it
achieved a good balance between training time and fit of visual
system data (29). We built three variants of CORnet-Z networks.
The illiterate network was trained only on the visual images in
ImageNet (ImageNet Large Scale Visual Recognition Challenge
2012 dataset; about 1,300,000 image exemplars distributed over
1,000 classes such as dogs, cars, etc.). Two literate networks were
additionally trained to recognize words. To this end, we generated
1,300,000 word exemplars distributed over 1,000 “word classes,”
where each word class actually corresponded to a single word,
while exemplars varied in location, size, font, and scale. The liter-
ate networks thus had 1,000 additional output units (Fig. 1). In

the unbiased literate network, their afferent connections were dis-
tributed across all units in the dense layer. In the biased literate
network, to simulate the hypothesis of a biased connectivity from
a subregion of visual cortex to language areas, we restricted the
output units’ afferent connections to a subset of 49 units in the
dense layer (this number, corresponding to ∼10% of dense-layer
units, was guided by performance on preliminary simulations with
a simplified model). These biased units will be dubbed “Dense+”
hereafter (violet units in Fig. 1B), in opposition to unbiased units
(“Dense�”; white units in Fig. 1B). The code for training the net-
works is available online at https://github.com/THANNAGA/
Origins-of-VWFA along with pretrained models for all conditions.

Stimuli. We used the training and test sets from ImageNet,
amounting to 1,000 image classes, each with about 1,300 training
exemplars and 50 test exemplars. Images were rescaled to 228 ×
228 pixels before presentation. In addition to ImageNet, we also
generated written word stimuli. All word exemplars were black-
on-white images of dimension 228 × 228 pixels. The word set was
selected from 1,750 high-frequency French words known by 4-y-
olds, as listed by the French Academy of Amiens. Within this list,
we randomly selected 1,000 words, whose length ranged between
three and eight letters, without accents. Each word was consid-
ered as a class on its own, and in order to match the ImageNet
dataset, we generated 1,300 training exemplars of each word, vary-
ing in size, font, location, and case, and 50 test exemplars. In the
training set, character size (scale) varied randomly between 40
and 80 pixels (with steps of 10 pixels, bounds included); fonts
were either “Arial” or “Times New Roman,” and case was either
upper or lower. Words were randomly shifted away from a central
presentation, with shifts ranging uniformly from �50 to +50 pixels
along the x axis and �30 to +30 pixels along the y axis. Exemplars
were generated with a uniform probability for all of these varia-
bles. Though single-word fixations are not uniformly distributed
during reading, our choice of a small and uniform positional vari-
ability is adequate for a CNN with built-in location invariance and
without a fovea. On the other hand, the large variability in font,
size, and case is consistent with the rich diversity of reading mate-
rial to which children are exposed in modern societies. In the test
set, the 50 exemplars for each word were generated in the same
way, except that the fonts were randomly chosen between
“Calibri,” “Courier,” and “Comic Sans.” A few example stimuli
are shown in Fig. 1A.

Training. Deep-learning models typically involve a single train-
ing phase on a single large dataset, whereas children learn to
identify faces and objects long before they acquire reading. To
simulate reading acquisition as the partial recycling of prior
visual recognition abilities, we trained the networks in two
stages: an “image” phase (phase 1) followed by an “image +
word” phase (phase 2). Word units were only added to the out-
put layer of the network during the latter phase. Throughout
phases 1 and 2, the networks were trained with Stochastic Gra-
dient Descent on a categorical cross-entropy loss, using a linear
learning rate scheduling (SI Appendix).

Neural networks are notoriously prone to the phenomenon of
catastrophic interference, whereby learning of a new task, or even
on a new dataset, can spectacularly deteriorate previously stored
knowledge. This well-studied effect can be alleviated in a number
of ways, included interleaved learning and the use of dropout (49,
50). We used interleaved learning: During phase 2, output word
units were added to the network, and the new training set was
obtained by concatenating and shuffling the original generic
image set and the new word set. The sets were matched for num-
ber of classes and exemplars, and the presentation probabilities
were 50% images and 50% words. An illiterate control network
was trained only on ImageNet, for as many epochs as the literate
networks.
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While it is common to freeze a network’s lower-level weights
during transfer of learning to new datasets or tasks, here, we
trained the full network during the first and second stages, mind-
ful of the fact that an effect of literacy has been reported as early
as V1 in the visual pathway (17). Finally, deep-learning models
trained on classification usually also augment the training set by
performing various visual transforms that do not have an impact
on the semantics of the image, such as cropping (which for words
had to contain at least 90% of the original input, so as to avoid
generating nonwords), resizing, and mirroring. We included such
transformations in our training set, but because words are not
normally seen in mirror form, and for the sake of a fair compari-
son of network performance between words and pictures, we
excluded mirror transforms for all classes during training.

Results
Training and Recognition Performance. For each model condition
and at each epoch of training, we computed the average top-1
accuracy on the test set over five trained networks, i.e., the pro-
portion of correctly classified exemplars in the test set. Fig. 2A
shows that performance for all networks on ImageNet was on par
with earlier reports for CORnet-Z. On the word dataset, the unbi-
ased network converged slightly faster than the biased network.
The higher accuracy of the literate network on words than on pic-
tures, despite significant variability in case, font, and size, may be
due to the simpler black-on-white layout of the word stimuli.
Note that only a small drop of performance on images was seen
upon the introduction of words (Fig. 2A). Randomly interleaving
words with generic image categories during the second phase of
training was probably sufficient to avoid interference (even in the
absence of dropout, which was not used in our simulations). We
observed similar accuracy profiles in the other four runs with new
random seeds (SI Appendix, Fig. S1).

After training, most of the trained words continued to be
recognized when two of their letters were transposed (e.g.,
“BAGDE”; SI Appendix, Fig. S2). The accuracy profile fol-
lowed an “inverted U” profile as a function of the position of
the transposed letters, indicating that transposing the first or
the last letter had a greater impact on readability than transpos-
ing the inner letters (SI Appendix, Fig. S2). Performance was
higher for letter transpositions than for substitutions of the
same letters. These results were in agreement with experimen-
tal observations on letter transpositions (34, 35). Interestingly,

similar findings were obtained in baboons trained to perform
lexical decision on English words (51), confirming that they
arise at a purely orthographic level, as in the present CNN,
without requiring additional semantic or phonological influen-
ces. The decoding analysis across all layers further suggests that
the transposed-letter effect arises in the initial layers of the net-
work and is independent of literacy (SI Appendix, Fig. S5).

Changes in Representational Spaces. To measure whether and how
literacy changed the networks’ representations for images and
words, we calculated the mean vector of activation evoked by 80
randomly sampled pictures and words within each layer of the
models. We then computed their Representation Dissimilarity
Matrix (RDM), which characterizes the structure of internal rep-
resentations, independently of the specific units activated (52, 53).
Finally, we examined how the RDMs resembled each other across
the three different networks, an approach known as “second-
order isomorphism” (53). As can be seen in Fig. 2B, for objects,
the RDMs were extremely intercorrelated, with r approaching 1
for the V1, V2, and V4 layers and only a slight drop for the IT,
dense, and output layers. Thus, the image-representational space
was very similar in all networks and remained largely preserved,
even after a network was trained for words (mimicking functional
MRI [fMRI] representational similarity results from ref. 11). For
words, however, the representational changes were dramatic in
the late layers of the literate networks. Both biased and unbiased
literate networks converged to highly similar representation space
(r approaching 0.85), and this representational space was signifi-
cantly different from that of the illiterate network (r = 0.16 and
0.15, respectively, with unbiased and biased networks in the out-
put layer; resampling test across 10,000 bootstraps, P < 0.0005).
The change in representational similarity induced by literacy was
already detectable in the V4 layer (r = 0.99, 0.91, and 0.91 for cor-
relation between unbiased–biased, biased–illiterate, and
unbiased–illiterate, respectively), but not V1 or V2—in partial dis-
agreement with fMRI findings that V1–V2, rather than V4, hosts
detectable literacy-induced changes in readers of alphabetic lan-
guages (refs. 5, 17, and 54; although see also ref. 55).

To visualize those internal changes, we plotted the activations
evoked by various word stimuli in the subspace of the first three
principal components of word-evoked activity, within each of the
three top layers (Fig. 3; although this figure shows only one liter-
ate network, i.e., unbiased, very similar results were found for the
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V4
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V2
128x28x28

Illiterate condition
Dense layer: 512x1
Output: 1000 Images
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512x7x7

…
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Output: 1000 Images 

+ 1000 Words

Literate condition
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Dense layer: 512x1
Output: 1000 Images
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B
Training phase 1:

ImageNet

Training phase 2: 

ImageNet
+ 1000 words

Fig. 1. Network architectures and training schemes. (A) Examples of ImageNet and word stimuli illustrating the image sets used in two training phases.
(B) Testing the biased-connectivity hypothesis by training the CORnet CNN model of the ventral visual pathway under three conditions; 1) illiterate condi-
tion: network trained only on ImageNet; 2) unbiased literate condition: network first trained on ImageNet, then on ImageNet and words, with a new set
of fully connected output word units; and 3) biased literate condition: network trained on ImageNet, then on ImageNet and words, with biased connec-
tivity between a subset of units in the dense layer, and the output word units.

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S
N
EU

RO
SC

IE
N
CE

Hannagan et al.
Emergence of a compositional neural code for written words: Recycling of a
convolutional neural network for reading

PNAS j 3 of 12
https://doi.org/10.1073/pnas.2104779118

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
5,

 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104779118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104779118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104779118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104779118/-/DCSupplemental


www.manaraa.com

biased network). This plot revealed how the acquisition of literacy
led to the emergence of an invariant neural representation of
words, with a decrease in the impact of physical parameters (loca-
tion and size) and an increase in the impact of reading-relevant
parameters (word length and word identity). In the illiterate net-
work, activity was primarily segregated by the physical parameters
of the words. Retinal location (four quadrants) was strongly segre-
gated in the ITand remained separated into top and bottom stim-
uli in the dense and output layers. In the literate networks, word
location had a much smaller impact in the ITand became indistin-
guishable in the dense and output layers. A similar change was
seen for physical size, which had a massive impact on all layers of
the illiterate network, but not the literate ones. Conversely, with
literacy, activation became systematically organized according to
word length in all three layers. Most importantly, the activation
vectors became increasingly segregated by word identity, irrespec-
tive of their location and size (Fig. 3). Only in the literate net-
works, the responses to a given word were all clustered together,
irrespective of those variations, with this invariance increasing

from the IT to the dense and output layers. The decoding accu-
racy estimated from each layer confirmed these observations (SI
Appendix, Fig. S5).

Single-Unit Analysis of Invariance for Size, Font, and Case. We next
asked whether we could trace those changes down to the single-
unit level. Skilled readers can recognize words effortlessly across
changes in size, font, case, and location. At the single-unit level,
could we see a trace of those invariances and how they build up
across the successive layers? For each unit in the network, and
each of three transforms—size, font, and case—we collected two
vectors of activations. These vectors were 1,000-dimensional and
recorded the activation evoked in the same unit by each of the
1,000 words in the training set, with each word being presented in
two distinct, randomly chosen values of the transform under con-
sideration (e.g., two different sizes). We discarded changes in loca-
tion, as location invariance is essentially imposed in convolutional
networks by the hard-wired mechanism of weight sharing, but
each word location was randomly sampled. We then computed

Illiterate
Unbiased

Biased

V1 V2 V4 IT dense output

0

Second-order isomorphism between network activations

Illiterate
Unbiased

Biased

Illit
era

te

Unb
ias

ed

Bias
ed

Illit
era

te

Unb
ias

ed

Bias
ed

Illit
era

te

Unb
ias

ed

Bias
ed

Illit
era

te

Unb
ias

ed

Bias
ed

Illit
era

te

Unb
ias

ed

Bias
ed

Illit
era

te

Unb
ias

ed

Bias
ed

To words

To objects
1

0 10 20 30 40 50 60 70 80
Training epochs

0

100

Va
lid

at
io

n 
Ac

cu
ra

cy

image dataset
word dataset

Words
Introduced

Biased

Unbiased

Illiterate

Literate

A B

Fig. 2. Changes in performance and internal representations during training. (A) Changes in performance: Average top-1 accuracy in the illiterate, unbi-
ased literate, and biased literate networks on the test set, separately for images and words. The introduction of words at epoch 50 (marked by a dashed
red vertical line) leads to a sudden increase in word-recognition performance, with only a very slight decrease for images. (B) Evidence for changes in
word, but not image, representational spaces. For each layer (V1, V2, V4, IT, dense, and output), the figure shows the pairwise correlation [also known as
second-order isomorphism (53)] of the RDMs, which characterize the representational space for images (B, Upper) and words (B, Lower).

Location Size Word length

Illiterate network Unbiased Literate network

3 4 5 6 7 8Small Large
Location Size Word length

3 4 5 6 7 8
Small Large

O
ut

pu
t

la
ye

r
D

en
se

la
ye

r
IT la
ye

r

−150
200 −50

150
−150

100

PC1 PC2

PC
3

−150
200 −50

150
−150

100

PC1 PC2

PC
3

−150
200 −50

150
−150

100

PC1 PC2

PC
3

−5
20 −6

4
−10

10

PC1 PC2

PC
3

−5
20 −6

4
−10

10

PC1 PC2

PC
3

−5
20 −6

4
−10

10

PC1 PC2

PC
3

−30
40

−20

−20

20

PC1
PC2

PC
3

30

−30
40

−20

−20

20

PC1
PC2

PC
3

30

−30
40

−20

−20

20

PC1
PC2

PC
3

30

−1000
1500

−500

2000
−1000

1000

PC1 PC2

PC
3

−1000
1500

−500

2000
−1000

1000

PC1 PC2

PC
3

−1000
1500

−500

2000
−1000

1000

PC1
PC2

PC
3

−40

80−40

60
−60

40

PC1 PC2

PC
3

−40

80−40

60
−60

40

PC1 PC2

PC
3

−40

80−40

60
−60

40

PC1 PC2

PC
3

−100

250 −150

150
−150

200

PC1 PC2

PC
3

−100

250 −150

150
−150

200

PC1 PC2

PC
3

−100

250 −150

150
−150

200

PC1 PC2

PC
3

−5

10−2

8
−2

6

−100
150−100

100
−50

100

−20

20
0

20
−5

20

PC1
PC2

PC
3

PC1
PC2

PC
3

PC1
PC2

PC
3

−750
750

−500

1000
−500

750

PC1 PC2

PC
3

−40
30−20

80
−20

40

PC1 PC2

PC
3

−150
50 −50

200
−100

50

PC1 PC2
PC

3

AIL, FACE, LITRE, ORANGE
TROMPER, VACANCES

AIL, FACE, LITRE, ORANGE
TROMPER, VACANCES

Example words Example words

Fig. 3. Principal component (PC) visualization of word representations. The figure shows the activity evoked by various word stimuli in the top three layers of
the illiterate and unbiased literate networks (the biased literate results were similar). Dimension reduction was achieved by extracting the first three principal com-
ponents in a Principal Component Analysis of the activation evoked by 960 stimuli (120 words × 4 positions × 2 sizes). The location of the words varied from �30
to +30 pixels along the horizontal axis and �15 to +15 pixels along the vertical axis, thereby spanning all the four quadrants (first column). Their size varied by a
factor of two (Arial font at size 40 and 80 points; second column). Their length varied from three to eight characters (third column). The fourth column shows the
activity evoked by six example words, which could be moved rightward (�), moved downward (3), or scaled in size ($) from the reference image (�).
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the Pearson correlation coefficient between the two vectors for
that transform (see ref. 56 for a related invariance index). The
correlation should be close to one if and only if the unit exhibits a
selectivity profile, across the 1,000 words, which does not vary
across changes in size, font, or case. Repeating this operation for
all units within a given network layer yielded a distribution of cor-
relation coefficients (Fig. 4A). As a global invariance index for an
entire layer, we used the medians of those distribution (Fig. 4B).

For simplicity, we refer to “pre-literate” as the network prior
to epoch 50, before the possible introduction of words, and
reserve the term “illiterate” to the network solely trained on
images for all 80 epochs. In the preliterate (“pre”) and illiterate
(“illit”) networks (blue and orange curves in Fig. 4), i.e., in the
absence of any training with words, the correlation distributions
revealed only a modest invariance to word size and font,
but not to case. This can be seen in Fig. 4A (top layer), where
for both networks, distributions were already signifi-
cantly shifted toward positive values for size (one-sampled, two-
sided t tests performed against zero; meansizepre ¼ 0:258, tsizepre ¼
51:289, psizepre ≪ 0:01; meansizeillit ¼ 0:197, tsizeillit ¼ 36:776, psizeillit ≪ 0:01Þ
and for font (meanfontpre ¼ 0:388, tfontpre ¼ 84:289, pfontpre ≪ 0:01;

mean
font
illit ¼ 0:363, tfontillit ¼ 85:762, pfontillit ≪ 0:01), but not different

from zero or even shifted toward negative values for case
(meancasepre ¼ 0:009, tcasepre ¼ 2:083, pcasepre ¼ 0:038; meancaseillit ¼�0:058,

tcaseillit ¼�11:971, pcaseillit ≪ 0:01). This finding shows that the toler-
ance to size and to systematic changes in shape that were acquired
for the purpose of image classification generalized in part to the
novel task of processing words. Contrariwise, letter mappings across
uppercases and lowercases are largely arbitrary (e.g., A and a, E
and e) and therefore have to be explicitly learned during reading
acquisition (8).

This initial invariance, however, was dramatically enhanced
once the networks were trained to recognize words. In both
biased and unbiased literate networks (red and green curves in
Fig. 4), invariance for size and font started to rise in the IT,
while invariance for case only appeared in the dense layer. As
could be expected, for all networks and transforms, invariance
always culminated at the output level, where unit responses for
a word and its transform became highly invariant (correlation
coefficient r close to ∼0.9). Strikingly, however, that invariance
for all transforms was much stronger in the Dense+ units of the
biased network compared to the unbiased network (Fig. 4B).
This observation shows that biased connectivity promotes the
emergence of a restricted cluster of invariant units, mimicking
the VWFA (3, 6–8), before the final output stage of the net-
work. While this was clearest in the dense layer, the long tail of
the distribution for IT units in Fig. 4B indicates that many IT
units also acquired some degree of invariance, particularly for
size and font, in the course of word-recognition training.

In SI Appendix, Figs. S3 and S4, we show how this invariance
partially extends to variations in word rotation and letter spac-
ing, which were not present in the training dataset. Briefly,
word recognition remained successful up to a rotation of ∼10˚
and a spacing of ∼0.75 letter width, which is nonnegligible, yet
lower than the experimental results (30).

Characterization of Word-Selective Units in the Dense Layer. A typ-
ical feature of the VWFA is its activation preference for printed
words over other classes of images. Therefore, we next asked
whether some units in the dense layer of each network exhib-
ited such word selectivity. A unit was deemed word-selective
when its average response to word stimuli was 3 SDs above its
responses to faces, bodies, houses, and tools (see SI Appendix
for details). As a replication set, we also probed these units’
responses to a hierarchy of increasingly word-like stimuli, simi-
lar to Vinckier et al. (31) (SI Appendix, Fig. S6).
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Fig. 4. Invariance for size, font, and case at the single-unit level. (A) Dis-
tribution, over all the units of a given layer, of the invariance indices for
changes in size, font, and case (columns) and for different networks (pre-
literate in blue, illiterate in orange, unbiased in green, and biased in red).
Each curve shows the distribution, over units in a given layer and network,
of the mean correlation coefficient between the activities evoked by two
different versions of the word (e.g., font A vs. font B). A correlation of
zero indicates no invariance. The emergence of a bump near one in the
top layers of the literate networks (green and red curves) indicates that
many units became both word-selective and invariant over irrelevant stim-
ulus variations. Silent units, i.e., units that did not respond to any of the
presented stimuli, were excluded from the distribution. (B) Median invari-
ance index (median of the distribution of correlation coefficients) across
the hierarchy of layers for the four different networks.
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In the preliterate and illiterate networks, we found only a few
word-selective units (respectively, five and six units; Fig. 5, Upper).
Even though those units responded much more strongly to words
than to other pictures, their average profile of selectivity did not
discriminate between false fonts, infrequent letters, frequent letters,
frequent bigrams, frequent quadrigrams, and words. We thus inter-
pret these units as being sensitive to the horizontal shape of words
and/or to high-contrast line intersections, either as a result of train-
ing or by mere chance initialization of network weights.

Word-selective units were much more numerous in the literate
networks (33 units in the biased network, including 29 among the
Dense+ units; and 68 units in the unbiased network; Fig. 5,
Lower). Those units responded to false fonts and infrequent let-
ters, but showed markedly higher responses to all stimuli that con-
tained frequent letters. This indicates that word-selective units in
the dense layer became partially selective for the learned letters,
rather than for general word shape or subletter features. We
observed similar results upon estimating the mean response of all
the units in a given network and layer (SI Appendix, Fig. S7).
While the networks that were trained to recognize words showed
increased activations to written words and to word-like stimuli in
most layers, the preliterate and illiterate networks failed to
respond strongly to strings starting from layer IT (SI Appendix,
Fig. S7).

We next examined what was the function of those units prior
to the acquisition of visual word recognition. Prior to the intro-
duction of words in the training set, word-selective units were
overwhelmingly uncommitted. In the two literate networks,
when returning to the preliterate stage (where the network was
solely trained to classify pictures), these units showed no

selectivity toward any of the tested categories and exhibited an
overall low response (SI Appendix, Fig. S8). This finding mir-
rors the longitudinal fMRI findings of Dehaene-Lambertz et al.
(11), although in this study, the word-selective units did tend to
be initially weakly responsive to tools.

We next wondered if these word-selective units exhibit a
length effect, i.e., greater average activity for longer words. To
address this question in our networks, we computed the activa-
tion evoked in word-selective units of the dense layer, for words
ranging from three to eight letters. We then evaluated the
Spearman rank correlation between length and mean activa-
tion. SI Appendix, Fig. S9 shows that, on average, the activation
of word-selective units in the dense layer of the network
increased monotonically with word length. This was true for
most units: Only a few units showed no variation or, very rarely,
a negative trend (SI Appendix, Fig. S9).

Finally, we investigated the causal role of word-selective
units in word recognition through focused lesioning i.e., simu-
lating alexia. Interestingly, we found that removing 20% of
units in literate networks sufficed to produce a complete
impairment on words (SI Appendix, Fig. S10). This effect was
specific to the word-selective units, and not the lesions of a sub-
set of units such as Dense+ units (or “VWFA units”).

A Sparse Neural Code for Words. We next analyzed the nature of
the neural code that allowed those selective units to encode 1,000
words. The first question we asked was to what extent the neural
code for words is effectively sparse, using only a subset of active
units for a given word, or is distributed across all word-selective
units. To this aim, we performed selective silencing experiments.

Fig. 5. Emerging selectivity for words and
word-like stimuli at the single-unit level. Each
panel shows the mean activation profile of
word-selective units in the four networks, in
response to pictures (faces, bodies, houses,
and tools) and to the Vinckier et al. hierarchy
of word and word-like stimuli. Preliterate and
illiterate networks contained very few string-
selective units, and those did not exhibit any
differential sensitivity to letter status or to fre-
quency. Word-selective units were more
numerous in the two literate networks and
showed markedly higher responses to stimuli
that contain frequent letters.
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We started by computing, for each unit, its distribution of activity
across the 1,000 words. Considering the activity pattern produced
in all word-selective units by a given word, we then set a unit to
zero when its activity for this word fell below a threshold percent-
age of the unit’s global activity distribution and examined the
effect on word-recognition performance (solid curve marked
“Lowest” in Fig. 6A). The results showed that it was possible to
silence the word-selective units whose response fell in the bottom
half of their global distribution without compromising at all the-
word recognition performance of the networks. Silencing in the
opposite order, however, starting with the most responsive units
(dashed curve marked “Highest” in Fig. 6A), had a dramatically
different impact. Silencing just the single unit whose response
were the strongest resulted in a dramatic drop in performance.
This analysis shows that the neural code for words is sparse: Not
only is it based on a small number of selective units (68 for the
unbiased network and 29 for the biased one), but the strongest
responses of these units are absolutely necessary for word recogni-
tion, while only the top ∼40% strongest responses are sufficient.

In order to examine the patterns of activity for each word,
we silenced the activity of each unit below the median of its
activation distribution across all words. This procedure resulted
in a sparse “bar code” purified of its unnecessary activity, and
yet sufficient to recognize each word (see examples in Fig. 6B).
Sparsity, defined as the average proportion of units with null
activity, was very high (86.7%) in the unbiased literate network,
with an average of 9 out of 68 units activated by a given word.
Thus, even in the absence of dropout, which is known to pro-
duce sparser codes (50), word representations in the networks
were effectively sparse. We observed similar effects in the
biased literate networks (SI Appendix, Fig. S11).

Modeling the Receptive Fields of Word-Selective Units. A simple
hypothesis for the effect of word length is that most units
respond to critical features, such as letters at a certain location
[a bank of letter detectors, which is the front end in most models
of word recognition (57–60)] or bigrams and other letter combi-
nations (41, 42, 46, 61). Longer words would then have a greater
likelihood of activating a greater number of such detectors.

To test the letter-coding hypothesis, we attempted to model the
response of each unit across words as a linear combination of 26 ×
8 features, i.e., its constituent letters (26 possibilities) at each of a
maximum of 8 possible ordinal positions. To capture the impor-
tance of edge letters in reading, our model adopted an end-coding
approach, where ordinal letter positions were assigned relative to
the exterior positions, with a leftward bias (e.g., in a five-letter
word, the initial three letters are assigned positions 1 to 3, while

the last two letters are assigned positions 7 and 8) (Fig. 7D). Given
the large number of features, we performed cross-validated regu-
larized linear regression (least absolute shrinkage and selection
operator [LASSO]) to generate a sparse estimate of features that
activate a given neuron. The response of each unit was measured
along 8,000 stimuli, i.e., each of the 1,000 words in the training set
(3 to 8 characters long) presented at 4 different locations and 2
different sizes, while the model matrix comprised 26 × 8 = 208
features. While this number may seem large, note that 1) it is rela-
tively small compared to the 8,000 data points of each unit; and 2)
the conservative cross-validated LASSO regression attributed null
weights to many of those regressors. The LASSO regularization
constant was estimated by using fivefold cross-validation.

The letter X position model was able to explain a large and sig-
nificant proportion of the response variability in word-selective
units (Fig. 7A). Interestingly, the fits for the end-coding model
were significantly better than for a purely sequential (i.e., left-to-
right), a word-centered (i.e., where letter position is coded relative
to word center and only longer strings occupy exterior positions),
or an overlapping end-coding model (see SI Appendix, Fig. S12 for
details). Fig. 7D shows some of the reconstructed receptive fields.
The units with highest letter-model fits were either selective to a
single letter irrespective of its position (e.g., unit no. 282 responded
to S at all positions) or were selective to a single or a few letters at
a certain position (e.g., unit no. 23 responded primarily to curved
letters at the first position and unit no. 53 only to the last position).
Some units were ultraselective, responding exclusively to a single
letter at a specific location (e.g., unit no. 142 responded to the let-
ter M at the word beginning; SI Appendix, Fig. S13). Such narrow
selectivity was not seen inside words, however, where most units
were selective for certain letters over a range of nearby positions
(e.g., unit no. 146 responded to letter O anywhere in the middle of
the word). Most units were positively activated by certain letters
and negatively activated (i.e., inhibited) by others, in what could be
termed a “letter-dipole” configuration (e.g., unit no. 38 encoded
“E but not R towards the end of the word”). In some cases, the
preferred letters occupied distinct locations (e.g., unit no. 21
seemed to care for letter E at a location left of letter R). In most
cases, however, a unit was sensitive (positively or negatively) to let-
ters at roughly the same location, suggesting a factorial code where
a product of independent preferences for location and letter deter-
mined the unit’s response, as proposed in some theories (62, 63)
and as observed in neural recordings of monkey inferotemporal
cortex (47). Overall, more than half of word-selective units had a
broad position-tuning profile, while others exhibited a sharp selec-
tivity toward a specific ordinal position relative to the left or right
side of the word (SI Appendix, Fig. S14).

Evaluating Letter vs. Bigram Codes. We verified that this letter X
position model could predict the neural responses to novel stimuli
forming a hierarchical stimulus set, i.e., 300 six-letter strings with
infrequent letters, frequent letters, frequent bigrams, frequent
quadrigrams, and words (Fig. 7B; false fonts were also included as
a control for overfitting, since each letter was substituted one-by-
one by a roughly similar nonletter shape). Interestingly, we found
that the model fit gradually increased from false fonts to word-
like stimuli. The increase from high-frequency letters to bigrams,
quadrigrams, and words contrasts with, but is not incompatible
with, our previous observation that the mean unit activity failed to
increase across the hierarchy. It merely suggests that the units
became tuned to stimuli that were finely adapted to the statistics
of real words. Indeed, Fig. 7A is incompatible with the hypothesis
that the model units are solely responsive to individual letters:
they must also be sensitive to letter combinations.

Indeed, while the proposed letter model was a good overall
predictor of the response to words (mean R2 = 0.66), the model
fits were poor for a few word-selective units, which exhibited a
mixed and complex letter X position selectivity (Fig. 7D). We
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unit 351: r2 = 0.47
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unit 150: r2 = 0.36
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unit 109: r2 = 0.2

7 units with lowest letter model fits

7 units with highest letter model fits

SO SS SU RS ES

AS SC SA SE IS

r2 = 0.9

AU QU NU OU TU

JU RU DU HU CU

r2 = 0.93

GZ EG CL GR SU

GL CU RG GU GN

r2 = 0.86

ER NE ET EU CE

BE EA GE TE HE

r2 = 0.82

PL PY PI PU PO

PN PE PH PR PT

r2 = 0.9

PO CR GR RO PY

SP PL PI OP PA

r2 = 0.78

MONO HO IO JO

VO RO TO YO NC

r2 = 0.94

CO OT OR PO GO

RO OC DO OF SO

r2 = 0.58

UR ON OR UF CH

UN IR GN AR OM

r2 = 0.54

TY BR IF RQ TR

CH GR BI MM MP

r2 = 0.37

RU RT KI IU NU

FU RN TY RR RD

r2 = 0.69

AT NI TR VI TU

AH NU TI NT TE

r2 = 0.61

AP JA AR LA AB

AN AM AS AV AI

r2 = 0.34

MEMB HE MI UM

MS NE MM IE MP

r2 = 0.21

Bidirectional positional letter coding scheme
1    2    3    4    5    6    7    8Example words

READ
NETWORK

R     E                A     D
N     E     T     W            O     R     K

A

D

B C

Fig. 7. Modeling the receptive fields of each unit. (A) Average fits of the ordinal letter-position model across different categories of stimuli (false fonts, infre-
quent [infreq.] letters, frequent [freq.] letters, frequent bigrams, frequent quadrigrams, and Vinckier words) when trained on words. Asterisks indicate statistical
significance. *P < 0.05; **P < 0.005; ***P < 0.0005; ****P < 0.00005. N.s., not significant. (B) Average fits for the bigram model. (C) Average fits for the com-
bined model with letter and bigram features. (D, Upper) Examples of reconstructed letter-based receptive fields of the seven word-selective units with the high-
est letter-model fits, from the nonbiased literate network. Each matrix shows, for a given unit, which combinations of letters (vertical dimension, 26 levels) x posi-
tion (horizontal dimension, 8 levels) were significant predictors of the unit’s response to words. LASSO regression set many coefficients to zero. Nonnull
coefficients are indicated by the size of the corresponding letter. Positive coefficients are indicated in red, and negative ones in blue. Below each panel are
bigram model fits for the same units, along with the 10 bigrams with the highest regression weights. Weight magnitude is indicated by letter size, and sign is
indicated by colors (red = positive, blue = negative). (D, Lower) Examples of reconstructed letter-based receptive fields for the seven word-selective units with
the lowest letter-model fits.
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wondered if their responses would be better predicted using letter
bigrams as regressors. To test this idea, we first modeled the word
responses as a linear combination of responses to frequent
bigrams. The 1,000-word training set comprised 271 unique
bigrams (pairs of side-by-side letters, regardless of their position),
which were used as features in a second linear regression. Inter-
estingly, the bigram model fits (mean R2 = 0.73) were significantly
larger than those of the letter model (P < 0.00005, paired t test).
However, the better model fits could be a consequence of the
greater number of degrees of freedom of the bigram model.
Indeed, according to the corrected Akaike information criterion
(AICc), both model fits were comparable, and their AICc values
did not differ significantly (P = 0.26, paired t test). For each unit,
Fig. 7D shows the bigram that had the highest model coefficients.
This analysis often confirmed the letter-based model’s conclu-
sions. For instance, unit no. 282, which responded to letter S at
any position, was fitted in the bigram model by approximately
equal weights for all frequent bigrams containing that letter (SO,
SU, SE, ES, etc.). Thus, the most economical description is that
this unit simply responds to letter S. However, for units with poor
letter-model fits (Fig. 7D), the bigram model appeared much
more satisfactory, with some units responding strongly to a single
bigram (e.g., unit no. 83, bigram AT) or to two of them (e.g., unit
no. 109, bigrams ME and MB). Thus, some units behaved as
approximate bigram detectors, as postulated, for instance, in the
local combination detector model of word recognition (41).

Next, we asked whether these two models explained distinct
variance in the word responses. If true, then a combination of
the features from both models (n = 26 × 8 + 271 = 479) should
yield higher fits compared to either of the individual models.
This was indeed true: The observed average model fit (R2 =
0.77) was significantly higher than either of the two models,
and, crucially, its average AICc value was also significantly
lower (P < 0.00005, paired t test).

In summary, although the most parsimonious letter-based
model explained a large amount of variance across many word-
selective units, the bigram model led to equivalent results, and,
most crucially, the best fit was obtained by combining both regres-
sors. Those findings suggest that, with literacy, the networks
became attuned to letters and their ordinal position, but also the
statistics of their cooccurrence in the trained orthographic system.

Discussion
Our goal was to develop and assess a minimalist model of how
the VOT cortex changes during reading acquisition, through the
mere recycling of a biologically plausible convolutional network
model of object recognition, without introducing ad hoc reading-
specific constraints. As occurs in children, a standard CNN was
first trained to identify pictures of various objects and scenes
and then a set of 1,000 words of different lengths across varia-
tions in location, size, font, and case. Furthermore, we tested the
biased-connectivity hypothesis, according to which, in literate
humans, only part of the VOT cortex becomes specialized for
orthographic coding because of its privileged output connections
to language areas. To this end, we compared networks whose
dense layer was either fully connected to all output units or in
which only a subset of dense units were connected to the output
layer, simulating a putative VWFA (Fig. 1).

Behaviorally, we found that a network designed for image rec-
ognition could easily learn to recognize 1,000 written words. Both
biased and unbiased networks reached an accuracy of 80% or
more after very few training epochs (Fig. 2A). Critically, accurate
recognition of abstract word identity occurred across large varia-
tions in the physical features of stimuli, particularly across case,
thus approximating the perceptual invariance developed by expert
human readers. However, invariance for rotation and letter spac-
ing (which were absent in the training set) remained smaller than

in humans, suggesting that its simulation may require exposure to
a more extended training set. Importantly, in all cases, the perfor-
mance of biased and unbiased networks was similar, suggesting
that the development of an anatomically focal VWFA does not
present a functional advantage per se.

The acquisition of reading induced only a barely perceptible
deterioration in the previously trained object recognition [note
that catastrophic interference (64) was avoided by mixing pictures
and words in the training set]. This result is compatible with the
fact that general object-perception abilities differ only minimally
between illiterate and literate adults (17, 65) and that deficits in
object recognition are not typically observed during the acquisi-
tion of reading in humans. At the neural level, we found that
reading acquisition encroached upon initially uncommitted units
that exhibited an overall low response to pictures (SI Appendix,
Fig. S8). This finding is compatible with longitudinal fMRI data
showing that, in the first year of reading acquisition, the VWFA
emerges at a site with little or no response to objects or faces
(11). It nuances the “direct competition” or “pruning” view of
neuronal recycling (66): The acquisition of reading probably does
not compete with other visual recognition abilities, such as face
recognition, by dislodging them from their locations, but by occu-
pying nearby neural sites that cease to be available for the further
growth of face- and object-selective regions, thus forcing them to
develop elsewhere [for instance, in the right hemisphere (11, 17)].
Here, we concentrated our analyses on the growth of word
responses, but, in the future, it would be interesting to study
whether this growth did indeed compete with the network’s abili-
ties, either to dedicate units to additional pictures such as faces
(11, 17) or to accurately recognize them across mirror inversions
(55, 67, 68), thus mimicking the small negative downsides of liter-
acy that have been reported in the literature.

At the neural level, we found that reading acquisition led to
the structuring of a distinct neural space for words (Fig. 3). In its
top three layers, corresponding to the mid to anterior IT cortex,
the network developed critical features of human reading, includ-
ing invariance for physical location and size, sensitivity to word
length, and a segregation of responses according to abstract word
identity. Small representational changes were also seen in area
V4, but the simulations did not reproduce the reading-related
changes in the early visual cortex that have been observed in
human fMRI when contrasting literate and illiterate subjects (17)
or known letters vs. control stimuli (5, 20, 54). It is possible that
those responses reflect top-down inputs from higher-level areas
(33, 55), which were not simulated in the present, purely feed-
forward network. However, it is also possible that the convolu-
tional structure of the network, with its automatic duplication of
weights across image locations, prevented the emergence of a
reading-related retinotopic specialization, as observed in refs. 17
and 54. The convolution hypothesis is a massive simplification
adopted for computational efficiency, and computational resour-
ces prevented us from simulating a nonconvolutional network,
which might be necessary to capture such fine-grained effects.

At the single-unit level, perceptual invariance emerged from
the development, in the top layers of literate networks, of a
restricted set of word-selective units whose activation profiles
were strongly invariant across changes in size, font, and case
(Fig. 4). The most remarkable finding is how compact this rep-
resentation was. Only 68 word-selective units emerged in the
unbiased network, and only 33 in the biased network—and in
the latter, only 29 belonged to the Dense+ units and could
therefore play a causal role in word recognition. Of course, in
real life, each of these dimensions would likely be associated
with an entire column of neurons, rather a single unit. Still, the
results show that a 29-dimensional space (or even less, assum-
ing that further dimension reduction could be achieved) suffi-
ces to recognize 1,000 words. While surprising, this number is
on a par with the 50-dimensional space that demonstrably
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suffices to encode faces at the neural level (69). Intuitively, the
statistics of letters are highly redundant (70), and, conversely, a
distributed code with 29 dimensions has a large combinatorial
capacity (since 229 ∼ 536 million), even when taking into con-
sideration the need for robustness. In fact, we found that, for
any given word, the number of required units was even smaller.
This is because each word did not evoke a fully distributed
code over all word-specific units, but a sparser code: For any
given word, silencing the ∼60% of word-selective units most
weakly activated by this word did not impair identification.
Thus, on average, less than 30 active units (for the unbiased
network) or 15 units (for the biased network) sufficed to
uniquely specify any of the 1,000 trained words.

Fig. 7 represents our best attempt to characterize these dimen-
sions of word encoding, i.e., the receptive fields of the word-
selective units. Comparison of various letter-coding models
revealed that the neural code for the ordinal position of letters in
a word was best described as originating from edge positions. We
found that most units are sensitive to the presence of one or a
small set of letters at a given position, sometimes with a contrast
or letter dipole (e.g., E but not R). However, we also found that
the units’ receptive field could not be solely described by a sum of
responses to individual letters: A better fit was achieved by assum-
ing a sensitivity to neighboring letters, i.e., bigrams. Such a bigram
code may be tied to the use of convolutional architecture and/or
supervised training, as one previous computational study failed to
find coding for letter combinations in a deep generative model
trained without supervision (71). The empirical data are conflict-
ing: There is behavioral and brain-imaging evidence that bigrams
are a crucial cue to word identity (31, 32, 41, 42, 46, 72), but also
recent data suggesting that the bulk of bottom-up orthographic
coding may be based on a conjunction of single letters and their
positions (33, 44, 45). The present results reconcile both, as they
suggest that, in the course of learning, a neural network will make
use of all available statistical cues and will develop both letter-by-
position codes and bigram-sensitive units.

With respect to the biased connectivity hypothesis, we found
that biased and unbiased networks developed similar representa-
tions (e.g., Fig. 2). The main difference was that the biased net-
work developed a more compact representation, with twice fewer
word-specific units than in the unbiased network, despite equiva-
lent overall word-recognition performance. This compacity came
at the expense of a greater sensitivity to focal lesions. By silencing
about 20% of the word-specific units, as defined by their category
specialization, we made literate networks completely unable to
read, thus simulating the main features of pure alexia. The unbi-
ased network was more resilient to small lesions, thanks to more
diffuse coding over a larger number of units. Indeed, only the
biased network could explain how a focal lesion (restricted to the
Dense+ units, corresponding to the VWFA) could yield a com-
plete loss of reading abilities. In the unbiased network, the word-
coding units were dispersed haphazardly, such that it is hard to
see how they could be targeted by a single lesion. Nevertheless,
we acknowledge that our model does not have a notion of cortical
topography. If additional assumptions were added, such that
neighboring units tended to respond to similar features, as in
Kohonen networks and more recent work (73), then even the
unbiased network may end up acquiring a functionally localized
VWFA. Thus, the biased connectivity hypothesis is neither falsi-
fied nor settled by this study, and adding topography to CNNs
(73) would be an interesting future project.

Limits of the Present Model
We now address some of the limits of our modeling approach. A
first concern is the extreme neurobiological oversimplification of
the network architecture we used. Although CNNs may be con-
strued as simplified models of the visual cortex, they lack many

properties such as spiking dynamics, neuron subtypes, cortical
layers, intricate local connectivity within or between layers and
areas, receptor types and densities, temporal delays, realistic
learning rules, etc. By construction, the absence of topology in
their upper layers also means that none of these models can
reproduce the regular topographical organization of category-
specific areas in the VOT cortex and the emergence of the
VWFA at a fixed location relative to those functional landmarks
(11, 17, 19). For the same reason, the left-lateralization of the
VWFA falls outside the scope of the model, as it does not distin-
guish between left and right hemispheres.

These limitations of CNNs as models of the visual cortex are
severe, and yet, astonishingly, it is now well documented that
when trained on a large number of categories, not only can
CNNs reach human-level performance on visual classification
tasks, but their single-unit responses can also predict neural,
fMRI, and magnetoencephalography activation patterns in the
visual cortex of human and nonhuman primates (39, 73–78).
Our choice of CNN architectures for modeling VOT cortex is
thus conservative, and since the present models already mimic
several known properties of the reading system (e.g., invariance
for case, word -length effect, pure alexia, etc), we may hope that
our networks’ predictions may fit the activity evoked by written
words as well as others did for faces or objects (39, 73–78).

Another critique concerns the training set. The ImageNet
picture set that we used was never intended to mimic the statis-
tics of the images that a young child is confronted with. Simi-
larly, the printed words we used as stimuli may not mimic the
progressive introduction of digits, letters, and words, possibly
handwritten, that a child receives in the family and the school.
In the future, it may be important to include more realistic
training sets (e.g., ref. 75) or to allow for unsupervised learning
episodes. While introducing more realistic developmental
stages, such as an initial letter-by-letter reading stage, may
allow us to better capture the interaction of word length and
age, it is unclear how this would change the representations of
these categories and whether the selectivity analyses that we
carried out in the present study would come out differently.

The CORnet-Z network that we used is known to provide a
good fit to neural activity despite being relatively shallow, entirely
feed-forward, and trained only on ImageNet (29). Nevertheless, a
missing ingredient is lateral and recurrent connections (79, 80),
which play a critical role in other connectionist models of visual
word recognition, as well as in more recent generative (71) or pre-
dictive coding accounts (81), and are also omnipresent in the pri-
mate visual system. Several simulations have shown that recurrent
neural networks provide better predictors of activity in the human
visual system than purely feed-forward networks (39, 75, 82).
Intracranial recordings suggest that recurrent connections may be
particularly important in order to simulate the late part of the
neural response to words (33), which is likely to contribute mas-
sively to fMRI blood-oxygen-level-dependent signals. In this
respect, it is worth mentioning that the present model failed to
fully capture an important fMRI dataset, by Vinckier et al. (31),
who found a progressive and continuous increase in fMRI activity
for stimuli approaching the statistics of real words. Our simula-
tions only captured the difference between stimuli with or without
frequent letters (SI Appendix, Fig. S7), which fits the initial, but
not the late, part of the human intracranial signals evoked by let-
ter strings (33). In the future, it will be interesting to see if the
late appearance of the full Vinckier gradient can be reproduced
by using a recurrent network architecture. The specialization of
the VWFA for reading prevails across all writing systems, ranging
from highly regular orthographic scripts to ideographic systems
(83). Still, it is possible to decode between two scripts in bilingual
subjects (84), and subtle differences exist between the topography
of VOT activations during reading different scripts (5), probably
due to both bottom-up and top-down specificities. It is thus likely
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that some fine features of the current results reflect the regulari-
ties of French orthography and may differ in languages with dif-
ferent orthographic statistics or using ideographic symbols.

Finally, the present work was limited to modeling the ortho-
graphic component of reading, putatively attached to the ventral
visual pathway. Yet, decades of research have shown that reading
acquisition involves multiple routes and a complex set of visual,
phonological, morphological, and lexico-semantic representations
(16, 57, 85–87). Other modelers have made the choice of captur-
ing these multiple routes in neural network models, often with
great success (e.g., refs. 57–61). Such global modeling of reading,
however, usually comes at the expense of not accurately modeling
the early visual stages of word recognition; indeed, in those mod-
els, the input is usually a bank of abstract letter identities, rather
than an actual image of the word (for exceptions, see refs. 71 and
88). Our networks face the converse limitation: They only process
visual inputs up to the classification level, akin to lexical access,
without any influence from downstream phonological, morpholog-
ical, or semantic systems. Fortunately, evidence from baboons and
monkeys, which have none of those late stages, suggests that
visual demands alone may suffice to drive the emergence of
orthographic abilities and a VWFA somewhat analogous to
humans (47, 89, 90). Nevertheless, focusing on the input ortho-
graphic system is a design choice for a first modeling step, and
not a theoretical statement, as it is known that phonological
representations, for instance, do impact on ventral visual repre-
sentations in humans (43). Again, a more complex, recurrent
architecture, combining visual and phonological inputs, would be
needed to accurately capture those observations.

Conclusion and Summary of Main Predictions
Beyond reproducing existing data, the main purpose of our
approach was to develop predictions concerning the fine-grained
neural code for words, which may soon become testable either
with very-high-resolution, high-field fMRI or with high-density
intracranial recordings. We therefore end by summarizing the
predictions that arise from our simulations.

First, we predict that the readers’ inferotemporal cortex con-
tains a sparse neural code for written words, with only ∼30
dimensions of vector coding sufficing to encode the 1,000 most
frequent words. Second, we predict that those vector codes are
encoded by word-specific neurons that do not respond to other
pictures (faces, bodies, houses, or tools). Third, these neurons
should be initially uncommitted in the young preliterate brain
and only become attuned to letters and their combinations in
the course of reading acquisition. Fourth, their overall activa-
tion should increase as a function of word length. Fifth, the
receptive field of those units should be characterized by a high
selectivity for one or a few letters at one or several consecutive
locations in the string, with occasional sensitivity to order (a
neuron may be selective to letter x around position p1 and to
letter y around position p2) and/or an additional inhibition to
several other letters (thus forming a letter dipole responding
to letter x, but not letter y, around position p).

Finally, according to the biased-connectivity hypothesis, the
location of those units should be predictable from their preexist-
ing pattern of projective connections to downstream language
areas. And, since we found that even in the biased literate condi-
tion, not all Dense+ units ended up being selective to words, we
predict that within the human VWFA, unlike monkey face
patches (91), some neurons may not respond to words and remain
committed to other visual categories. The latter predictions, how-
ever, may have to be revised once more realistic, topographic, and
recurrent models of reading acquisition are developed.

Data Availability. Neural networks data have been deposited in GitHub
(https://github.com/THANNAGA/Origins-of-VWFA).
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